资源类型

期刊论文 173

会议视频 4

年份

2023 18

2022 15

2021 18

2020 13

2019 17

2018 7

2017 21

2016 10

2015 7

2014 9

2013 4

2012 2

2011 6

2010 11

2009 3

2008 3

2007 4

2006 2

2005 2

2003 1

展开 ︾

关键词

太阳能 5

2022全球十大工程成就 2

Cu(In 2

Ga)Se2 2

太阳电池 2

晶体硅太阳电池 2

能源 2

1T/2H-MoS2 1

DPP);分布式功率转换器;开关电容转换器 1

MPPT);差分功率处理(Differential power processing 1

PDT 1

PV/T 1

SAHP 1

ZIF-8 1

n-Si 1

不毛之地 1

中俄火星联合探测计划 1

中国空间探测 1

串联内阻 1

展开 ︾

检索范围:

排序: 展示方式:

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

Reassessment of fenestration characteristics for residential buildings in hot climates: energy and economic analysis

Ali ALAJMI, Hosny ABOU-ZIYAN, Hamad H. Al-MUTAIRI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 629-650 doi: 10.1007/s11708-021-0799-z

摘要: This paper attempts to resolve the reported contradiction in the literature about the characteristics of high-performance/cost-effective fenestration of residential buildings, particularly in hot climates. The considered issues are the window glazing property (ten commercial glazing types), facade orientation (four main orientations), window-to-wall ratio (WWR) (0.2–0.8), and solar shading overhangs and side-fins (nine shading conditions). The results of the simulated runs reveal that the glazing quality has a superior effect over the other fenestration parameters and controls their effect on the energy consumption of residential buildings. Thus, using low-performance windows on buildings yields larger effects of WWR, facade orientation, and solar shading than high-performance windows. As the WWR increases from 0.2 to 0.8, the building energy consumption using the low-performance window increases 6.46 times than that using the high-performance window. The best facade orientation is changed from north to south according to the glazing properties. In addition, the solar shading need is correlated as a function of a window-glazing property and WWR. The cost analysis shows that the high-performance windows without solar shading are cost-effective as they have the largest net present cost compared to low-performance windows with or without solar shading. Accordingly, replacing low-performance windows with high-performance ones, in an existing residential building, saves about 12.7 MWh of electricity and 11.05 tons of CO2 annually.

关键词: parametric analysis     high-performance window     window-to-wall ratio (WWR)     facade orientation     solar shading     cost analysis    

Optimal Su-Do-Ku based interconnection scheme for increased power output from PV array under partial shading

P. SRINIVASA RAO,P. DINESH,G. SARAVANA ILANGO,C. NAGAMANI

《能源前沿(英文)》 2015年 第9卷 第2期   页码 199-210 doi: 10.1007/s11708-015-0350-1

摘要: Partial shading is a common phenomenon in PV arrays. They drastically reduce the power output because of mismatch losses, which are reliant on the shape of the shade as well as the locations of shaded panels in the array. The power output can be improved by distributing the shade over various rows to maximize the current entering the node. A Su-Do-Ku configuration can be used to rearrange the physical locations of the PV modules in a total cross tied PV array with the electrical connections left unchanged. However, this arrangement increases the length of the wire required to interconnect the panels thus increasing the line losses. In this paper, an improved Su-Do-Ku arrangement that reduces the length of the wire required for the connection is proposed. The system is designed and simulated in a Matlab/Simulink environment for various shading patterns and the efficacies of various arrangements are compared. The results prove that the power output is higher in the proposed improved Su-Do-Ku reconfiguration technique compared to the earlier proposed Su-Do-Ku technique.

关键词: array configuration     mismatch losses     partial shading     line losses     Su-Do-Ku arrangement    

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

《能源前沿(英文)》 2017年 第11卷 第4期   页码 461-471 doi: 10.1007/s11708-017-0503-5

摘要: Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MW in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWh with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

关键词: direct steam generation     solar power tower     solar multiple     thermal energy storage capacity     levelized cost of electricity (LCOE)    

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

《能源前沿(英文)》 2013年 第7卷 第4期   页码 525-534 doi: 10.1007/s11708-013-0278-2

摘要: If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildings or raise the road surface temperature for snow melting in winter. A road-solar energy system was built in this study, and the heat transfer mechanism and effect of the system were analyzed according to the monitored solar radiant heat, the solar energy absorbed by road and the heat stored by soil. The results showed that the road surface temperature was mainly affected by solar radiation, but the effect is hysteretic in nature. The temperature of the solar road surface was 3°C–6°C lower than that of the ordinary road surface. The temperature of the solar road along the vertical direction was 2°C–5°C lower than that of the ordinary road. The temperature difference increased as the distance to the heat transfer tubes decreased. The average solar collector efficiency of the system was 14.4%, and the average solar absorptivity of road surface was 36%.

关键词: solar energy     road-solar energy system     road surface temperature     solar absorptivity of road surface     solar collector efficiency of system    

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

《能源前沿(英文)》 2018年 第12卷 第2期   页码 239-248 doi: 10.1007/s11708-018-0533-7

摘要: Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three-dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.

关键词: solar thermoelectric generators     non-uniform solar illumination     performance evaluation     solar energy    

A review of bifacial solar photovoltaic applications

《能源前沿(英文)》   页码 704-726 doi: 10.1007/s11708-023-0903-7

摘要: Bifacial photovoltaics (BPVs) are a promising alternative to conventional monofacial photovoltaics given their ability to exploit solar irradiance from both the front and rear sides of the panel, allowing for a higher amount of energy production per unit area. The BPV industry is still emerging, and there is much work to be done until it is a fully mature technology. There are a limited number of reviews of the BPV technology, and the reviews focus on different aspects of BPV. This review comprises an extensive in-depth look at BPV applications throughout all the current major applications, identifying studies conducted for each of the applications, and their outcomes, focusing on optimization for BPV systems under different applications, comparing levelized cost of electricity, integrating the use of BPV with existing systems such as green roofs, information on irradiance and electrical modeling, as well as providing future scope for research to improve the technology and help the industry.

关键词: bifacial photovoltaics (BPVs)     bifacial     photovoltaics     applications     review     solar    

Economic Analysis of Residential Distributed Solar Photovoltaic

Xi Luo,Jia-ping Liu

《工程管理前沿(英文)》 2015年 第2卷 第2期   页码 125-130 doi: 10.15302/J-FEM-2015031

摘要: Under the huge challenges of global energy conservation, emission reduction and energy security, distributed solar photovoltaic industry has become the key means to achieve economic restructuring and low carbon economy. Based on System Advisor Model software, the authors choose Baoji as the sample plot. Household load, unit investment, loan interest rate and loan fraction are used as influence factors to analyze the economic benefits of distributed solar photovoltaic in China. The result demonstrates that government incentives help to increase the profitability of distributed solar photovoltaic by a large extent; other factors that influence the profitability includes household load, unit investment cost, loan interest rate and loan fraction.

关键词: distributed solar photovoltaic     internal rate of return     price ladder     government incentives    

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 867-881 doi: 10.1007/s11708-020-0707-y

摘要: This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.

关键词: concentrated solar power     parabolic trough receiver     heat loss     solar energy     annual performance    

Numerical and experimental research of the characteristics of concentration solar cells

Zilong WANG, Hua ZHANG, Binlin DOU, Weidong WU, Guanhua ZHANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 279-291 doi: 10.1007/s11708-019-0637-8

摘要: The development of automatic tracking solar concentrator photovoltaic systems is currently attracting growing interest. High concentration photovoltaic systems (HCPVs) combining triple-junction InGaP/lnGaAs/Ge solar cells with a concentrator provide high conversion efficiencies. The mathematical model for triple-junction solar cells, having a higher efficiency and superior temperature characteristics, was established based on the one-diode equivalent circuit cell model. A paraboloidal concentrator with a secondary optic system and a concentration ratio in the range of 100X–150X along with a sun tracking system was developed in this study. The GaInP/GalnAs/Ge triple-junction solar cell, produced by AZUR SPACE Solar Power, was also used in this study. The solar cells produced by Shanghai Solar Youth Energy (SY) and Shenzhen Yinshengsheng Technology Co. Ltd. (YXS) were used as comparison samples in a further comparative study at different concentration ratios (200X–1000X). A detailed analysis on the factors that influence the electrical output characteristics of the InGaP/lnGaAs/Ge solar cell was conducted with a dish-style concentrating photovoltaic system. The results show that the short-circuit current ( ) and the open-circuit voltage ( ) of multi-junction solar cells increases with the increasing concentration ratio, while the cell efficiency ( ) of the solar cells increases first and then decreases with increasing concentration ratio. With increasing solar cell temperature, increases, while and decrease. A comparison of the experimental and simulation results indicate that the maximum root mean square error is less than 10%, which provides a certain theoretical basis for the study of the characteristics of triple-junction solar cell that can be applied in the analysis and discussion regarding the influence of the relevant parameters on the performance of high concentration photovoltaic systems.

关键词: concentration     three-junction solar cell     mathematical model     electrical properties     solar energy    

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

《能源前沿(英文)》 2020年 第14卷 第2期   页码 383-399 doi: 10.1007/s11708-017-0505-3

摘要: Prediction of solar radiation has drawn increasing attention in the recent years. This is because of the lack of solar radiation measurement stations. In the present work, 14 solar radiation models have been used to assess monthly global solar radiation on a horizontal surface as function of three parameters: extraterrestrial solar irradiance ( ), duration sunshine ( ) and daylight hours ( ). Since it has been observed that each model is adequate for some months of the year, one model cannot be used for the prediction of the whole year. Therefore, a smart hybrid system is proposed which selects, based on the intelligent rules, the most suitable prediction model of the 14 models listed in this study. For the test and evaluation of the proposed models, Tamanrasset city, which is located in the south of Algeria, is selected for this study. The meteorological data sets of five years (2000–2004) have been collected from the Algerian National Office of Meteorology (NOM), and two spatial databases. The results indicate that the new hybrid model is capable of predicting the monthly global solar radiation, which offers an excellent measuring accuracy of values ranging from 93% to 97% in this location.

关键词: global solar radiation     statistical indicator     hybrid model     spatial database     correlation coefficients    

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

《能源前沿(英文)》 2016年 第10卷 第4期   页码 375-381 doi: 10.1007/s11708-016-0426-6

摘要: Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sørås meteorological station located at latitude 59° 39′ N and longitude 10° 47′E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m ·d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m ·d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.

关键词: coefficient of variation     global solar radiation     diffuse ratio     albedo     PV energy systems    

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 636-653 doi: 10.1007/s11705-019-1824-1

摘要: Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

关键词: solar stream generation     plasmonics     porous carbon     photothermal materials     solar energy conversion efficiency     water vapor generation rate    

Distributed governance of Solar Radiation Management geoengineering: A possible solution to SRM’s “free-driver

Andrew LOCKLEY

《工程管理前沿(英文)》 2019年 第6卷 第4期   页码 551-556 doi: 10.1007/s42524-019-0055-y

摘要: Geoengineering (deliberate climate modification) is a possible way to limit Anthropogenic Global Warming (AGW) (Shepherd, 2009; National Research Council, 2015). Solar Radiation Management geoengineering (SRM) offers relatively inexpensive, rapid temperature control. However, this low cost leads to a risk of controversial unilateral intervention—the “free-driver” problem (Weitzman, 2015). Consequently, this creates a risk of counter-geoengineering (deliberate warming) (Parker et al., 2018), resulting in governance challenges (Svoboda, 2017) akin to an arms race. Free-driver deployment scenarios previously considered include the rogue state, Greenfinger (Bodansky, 2013), or power blocs (Ricke et al., 2013), implying disagreement and conflict. We propose a novel distributed governance model of consensually-constrained unilateralism: Countries’ authority is limited to each state’s fraction of the maximum realistic intervention (e.g., pre-industrial temperature). We suggest a division of authority based on historical emissions (Rocha et al., 2015)—noting alternatives (e.g., population). To aid understanding, we offer an analogue: An over-heated train carriage, with passenger-controlled windows. We subsequently discuss the likely complexities, notably Coasian side-payments. Finally, we suggest further research: Algebraic, bot and human modeling; and observational studies.

关键词: geoengineering     Solar Radiation Management     governance     decentralised    

Security of solar radiation management geoengineering

Andrew LOCKLEY

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 102-116 doi: 10.1007/s42524-019-0008-5

摘要:

Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW) (National Academy of Sciences, 2015). There may be profound – even violent – disagreement on preferred temperature. SRM disruption risks dangerous temperature rise (termination shock). Concentrating on aircraft-delivered Stratospheric Aerosol Injection (SAI), we appraise threats to SRM and defense methodologies. Civil protest and minor cyberattacks are almost inevitable but are manageable (unless state-sponsored). Overt military attacks are more disruptive, but unlikely – although superpowers’ symbolic overt attacks may deter SRM. Unattributable attacks are likely, and mandate use of widely-available weapons. Risks from unsophisticated weapons are therefore higher. An extended supply chain is more vulnerable than a secure airbase – necessitating supply-chain hardening. Recommendations to improve SRM resilience include heterogeneous operations from diverse, secure, well-stocked bases (possibly ocean islands or aircraft carriers); and avoidance of single-point-of-failure risks (e.g. balloons). A distributed, civilian-operated system offers an alternative strategy. A multilateral, consensual SRM approach reduces likely attack triggers.

关键词: security     geoengineering     solar radiation ma-nagement     SRM    

标题 作者 时间 类型 操作

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文

Reassessment of fenestration characteristics for residential buildings in hot climates: energy and economic analysis

Ali ALAJMI, Hosny ABOU-ZIYAN, Hamad H. Al-MUTAIRI

期刊论文

Optimal Su-Do-Ku based interconnection scheme for increased power output from PV array under partial shading

P. SRINIVASA RAO,P. DINESH,G. SARAVANA ILANGO,C. NAGAMANI

期刊论文

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

期刊论文

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

期刊论文

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

期刊论文

A review of bifacial solar photovoltaic applications

期刊论文

Economic Analysis of Residential Distributed Solar Photovoltaic

Xi Luo,Jia-ping Liu

期刊论文

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

期刊论文

Numerical and experimental research of the characteristics of concentration solar cells

Zilong WANG, Hua ZHANG, Binlin DOU, Weidong WU, Guanhua ZHANG

期刊论文

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

期刊论文

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

期刊论文

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

期刊论文

Distributed governance of Solar Radiation Management geoengineering: A possible solution to SRM’s “free-driver

Andrew LOCKLEY

期刊论文

Security of solar radiation management geoengineering

Andrew LOCKLEY

期刊论文